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Abstract

The algorithm of Liu and Nguyen [IEEE Microw. Guided Wave Lett. 8 (1) (1998) 18; SIAM J. Sci. Comput. 21 (1) (1999) 283]

for nonuniform fast Fourier transform (NUFFT) has been extended to two dimensions to reconstruct images using spiral MRI. The

new gridding method, called LS_NUFFT, minimizes the reconstruction approximation error in the Least Square sense by generated

convolution kernels that fit for the spiral k-space trajectories. For analytical comparison, the LS_NUFFT has been fitted into a

consistent framework with the conventional gridding methods using Kaiser–Bessel gridding and a recently proposed generalized

FFT (GFFT) approach. Experimental comparison was made by assessing the performance of the LS_NUFFT with that of the

standard direct summation method and the Kaiser–Bessel gridding method, using both digital phantom data and in vivo experi-

mental data. Because of the explicitly optimized convolution kernel in LS_NUFFT, reconstruction results showed that the

LS_NUFFT yields smaller reconstruction approximation error than the Kaiser–Bessel gridding method, but with the same com-

putation complexity.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Spiral scanning in k-space for MRI [1,2] has received

increased attention in functional brain imaging and

cardiac imaging because of its efficient trajectory, low

motion sensitivity, and high speed. In spiral MRI, the

observed signal represents 2D Fourier transform of the

object along a spiral trajectory in k-space. The object
image can be reconstructed from spiral MRI signal us-

ing various algorithms.

A straightforward approach is the direct summation

of the inverse Fourier transform of the spiral signal

weighted by a proper density compensation function.

Although the high computational demand of the direct

summation method makes it impractical, it nevertheless

provides a mathematical foundation to be used as a
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standard to evaluate the reconstruction quality of other

reconstruction algorithms.

The widely accepted Kaiser–Bessel gridding method

[3,4] speeds up the reconstruction by interpolating the

data onto a Cartesian grid using Kaiser–Bessel convo-

lution kernel followed by fast inverse Fourier transform.

However, the performance of the Kaiser–Bessel gridding

method highly depends on the selection of the kernel
function parameter b. And even by using the optimal

parameter, the reconstructed image could still have

trajectory-dependent local distortions.

Sarty et al. [6] have extended a NUFFT method of

Dutt and Rokhlin [5] to spiral MRI, which is called

GFFT. GFFT is actually equivalent to a convolution

gridding method with a Gaussian kernel. Although it is

claimed in [6] that GFFT has better performance than
Kaiser–Bessel gridding method with a proper selection

of the Gaussian kernel parameter for 64� 64 pixel im-

age, it is not consistently better for all image sizes. And

the GFFT also highly depends on the selection of the

kernel parameter. Therefore, those two methods are
reserved.
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both referred as ‘‘conventional gridding method’’ in this
paper.

The LS_NUFFT is different from the conventional

gridding method in that it does not use any ready-made

kernel functions, but generates the kernel matrices that

fit for the spiral trajectory in the sense of least square

approximation error. Since those kernel matrices are

customized to the specific trajectory, it is possible that

the reconstruction performance could be improved than
that of the noncustomized conventional gridding meth-

ods. Similar goal was achieved efficiently in a recent

report [7] through a different approach using Min–Max

criterion plus iterative reconstruction. As with the

LS_NUFFT, since [8,9] have provided some important

analytical solutions, the additional computational cost

to obtain the kernel matrix is small and can be ignored.

In the following sections, the LS_NUFFT and con-
ventional gridding methods are first compared analyti-

cally in the NUFFT framework. The performance of the

LS_NUFFT was then evaluated experimentally against

that of the direct summation and Kaiser–Bessel gridding

methods, using simulated digital phantom data and in

vivo experimental data for 64� 64 and 128� 128 pixel

images.
2. Analytical assessment

2.1. Direct summation

Ideally, the reconstruction of the object image from

its two-dimensional Fourier transform in the continuous

k-space can be expressed as

IðxÞ ¼
Z
k
sðkÞei2pxkdA; x 2 FOV; ð1Þ

where x ¼ ðx; yÞ represents the location of the point in the

reconstructed image. k ¼ ðkx; kyÞ is the position of the k-

space data point. sðkÞ is the k-space data. dA represents

the area associating with k. FOV is the field of view.

In practice, the real spiral data is collected on a

discrete and finite grid of the k-space, along a spiral

trajectory. Before making direct summation approxi-

mation, a density compensation function (DCF) corre-
sponding to dA is necessary to enable effective uniform

k-space density. There are several options to obtain

DCF, including the Voronoi area approach [10], the

method derived by Remi et al. in [11] and the method

proposed by Meyer et al. in [12]. The DCF of Meyer et

al. is used in this paper because it is accurate and

computationally easy, and it works directly for both

single-shot and multi-shot (interleaved) trajectories.
This DCF is defined as

DðkÞ ¼ jk0j j sinðargfk0g 
 argfkgÞj; ð2Þ

where k0 is the k-space velocity vector.
Therefore, the direct summation reconstruction as an
approximation to Eq. (1) can be expressed as

IðxÞ � C
XM
p¼1

sðkpÞei2pxkpDðkpÞ; ð3Þ

where p is the index of the data on the k-space trajec-

tory. M is the number of k-space data points and C is

the constant scaling factor.

To simplify later derivations, let sp ¼ sðkpÞ, Dp ¼
DðkpÞ. Assume the FOV is located at ½
l=2; l=2 �
½
l=2; l=2, x can be re-scaled by a factor of 1=l, so that

x; y 2 ½
1=2; 1=2. Specifically, assume that x; y ¼
½
N=2 : N=2
 1=N , where N is the number of pixels

along each axis of the reconstructed image. Simulta-

neously, kp could be rescaled by a factor of l, so that the

form of IðxÞ does not change. since originally

kp 2 ½
kmax; kmax and kmax ¼ N=2l, after scaling,
kxp ; kyp 2 ½
N=2;N=2.

The final form of the direct summation reconstruc-

tion is

Iðx; yÞ ¼
XM
p¼1

sp expði2pðxkxp þ ykypÞÞDp; ð4Þ

where x; y ¼ ½
N=2 : N=2
 1=N and kxp ; kyp 2 ½
N=2;
N=2. The constant C is ignored for simplicity because it
does not change the relative contrast of the recon-

structed image.

Eq. (4) is used as a standard to compare the

LS_NUFFT and conventional gridding approach in

section 3.2.

2.2. Improved NUFFT

2.2.1. 1D NUFFT

The concept of NUFFT, as first stated by Dutt and

Rokhlin [5], is to approximate the item eixc defined on

nonuniform spaced point c by a finite set of items de-

fined on uniform spaced points in the neighborhood of

point c. Theorem 2.10 in [5] states:

Theorem 1. Let b > 1=2, c; d > 0 be real numbers, and let
mP 2, qP 4bp be integers, then for any x 2 ½
d; d,

eicx

����� 
 s
1
x

X½cmd=pþq=2

p¼½cmd=p
q=2

qpe
ipxp=md

����� < e
bp2ð1
1=m2Þð4bþ 9Þ;

ð5Þ

where ½� is the round function. ½cmd=p denotes the

integer nearest to cmd=p. sx ¼ expð
bðpx=mdÞ2Þ and
qp ¼ ð2

ffiffiffiffiffiffi
bp

p
Þ
1

expð
ðc
 pÞ2=4bÞ. When this idea is

extended to two dimensions for image reconstruction, q
is equivalent to the kernel function in conventional

gridding method. m represents the scaling factor of

FOV. Setting m to 2 is the same as doubling the image

FOV, which is proposed by O�Sullivan in [4] for gridding
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method. And qþ 1 represents the number of approxi-
mate items for each nonuniform spaced data point. q is

the same as the parameter �window width� used in con-

ventional gridding method.

2.2.2. Improved 1D NUFFT

Liu and Nguyen have improved NUFFT by select-

ing better scaling factors, one of which is the cosine

scaling factor scðxÞ ¼ cosðpx=mNÞ, and have proposed
a better way to generate the kernel function q, which
makes the following term minimum in the Least-

Square sense,

scðxÞei2pcpx
����� 


Xq=2
j¼
q=2

qðj; cpÞei2pðjþ½mcp Þx=m

�����; ð6Þ

where x ¼ ½
N=2 : N=2
 1=N , N is the number of re-
constructed points. p ¼ 1; . . . ;M , M is the number of

nonuniform spaced frequency points. q is assumed to be

an even number, cp is a real number. ½� denotes the

round function. It is not difficult to see that the above

form is similar to the left part of Eq. (5) by considering

that the latter takes d ¼ 1=2, c ¼ 2pcp, p ¼ ½cmd=p þ
j ¼ ½mcp þ j and scðxÞ is the same as sx, except that the
kernel q in the above form is no longer a known func-
tion and needs to be solved. Note that since the kernel

function for the improved NUFFT is optimally solved,

it will be better than any other kernel function that uses

the same scaling factor under the same Least-Square

criterion. Yet the bound for the improved NUFFT has

not been explicitly obtained as that for the NUFFT in

[5].

The cosine scaling factor used in Liu and Nguyen�s
report is adopted in this paper for the LS_NUFFT,

which enables closed form solution for the kernel

function. It is possible to find a better scaling factor to

further improve the performance of the LS_NUFFT.

According to Eqn.(4-9,12) in [8], the ðqþ 1Þ �M kernel

matrix corresponding to the cosine scaling factor can be

expressed as

qj;cp ¼ Gj;kak;cp ; j; k ¼ 
 q
2
� � � q

2
; p ¼ 1::M ;

where

G ¼ F
1;Fj;k ¼

2i sinðpðj
 kÞ=mÞ

1
 expði2pðj
 kÞ=mNÞ ;

ak;cp ¼ i
X

c¼
1;1

sin p
2m ð2k 
 c 
 2fmcpgÞ
� �

1
 expði p
Nm ð2fmcpg 
 2k þ cÞÞ

fmcpg ¼ mcp 
 ½mcp:

ð7Þ
2.2.3. LS_NUFFT

To this end, the improved 1D NUFFT is extended to

the LS_NUFFT for spiral MRI. The target is to opti-
mally approximate the form of direct summation re-

construction defined in Eq. (4).
The items in Eq. (4) are approximated by

expði2pxkxp Þ � scðxÞ
1
Xq=2

j1¼
q=2

q1ðj1; kxp Þ expði2pxð½mkxp  þ j1Þ=mÞ;

expði2pykyp Þ � scðyÞ
1
Xq=2

j2¼
q=2

q2ðj2; kyp Þ expði2pyð½mkyp  þ j2Þ=mÞ;

ð8Þ
where the scaling factor sc has been defined and the

kernel matrixes q1 and q2 are obtained using Eq. (7).

Substitute Eq. (8) into Eq. (4), we have

Iðx; yÞ ¼ ðscðxÞscðyÞÞ
1
XM
p¼1

spDp

Xq=2
j1¼
q=2

Xq=2
j2¼
q=2

� q1ðj1; kxpÞq2ðj2; kypÞ expði2pxð½mkxp  þ j1Þ=mÞ
� expði2pyð½mkyp  þ j2Þ=mÞ: ð9Þ

Let k1 ¼ ½mkxp  þ j1 and k2 ¼ ½mkxp  þ j1. Notice that

the right part of Eq. (9) can be turned into a form of

regular fast inverse Fourier transform on Cartesian co-

ordinate (k1; k2), and then scaled back by scðxÞ and

scðyÞ, as shown in the following equation.

Iðx; yÞ ¼ ðscðxÞscðyÞÞ
1
XmN=2
1

k1¼
mN=2

XmN=2
1

k2¼
mN=2

� sk1;k2 expði2pðxk1þ yk2Þ=mÞ; ð10Þ

where x; y ¼ ½
N=2 : N=2
 1=N . And sk1;k2 is obtained
by rewriting the term of

P
spDp

PP
q1q2 in Eq. (9) to

the convolution of the weighted k-space data and the

kernel matrices, which is expressed as

sk1;k2 ¼
X

½mkxp þj1¼k1

X
½mkyp þj2¼k2

spDpq1ðj1; kxpÞq2ðj2; kypÞ;

ð11Þ
where p ¼ 1; . . . ;M ; j1; j2 ¼ 
q=2; . . . ; q=2.

In summary, the LS_NUFFT algorithm consists of

the following four steps:

1. Generate the kernel matrices q1 and q2 corresponding
to the trajectory kx; ky and the scale factor sc.

2. Obtain convolution sðk1; k2Þ of the weighted k-space
data spDp and the kernel matrixes q1 and q2.

3. Perform 2D FFT on sðk1; k2Þ.
4. Re-scale the result by ðscðxÞscðyÞÞ
1.
2.3. Comparison to conventional gridding methods

The Kaiser–Bessel gridding method has been well

studied in [3,4]. In this section, the Kaiser–Bessel grid-

ding method is fitted in the framework of the NUFFT

by formulating the algorithm using the same configu-

ration of the parameters as that of the LS_NUFFT. The

GFFT algorithm is also formulated the same way for

comparison. The formulations are shown in Table 1.

Table 1 indicates the principle differences between the
LS_NUFFT and the conventional gridding algorithms:



Table 1

Scale factors and kernel matrices for the Kaiser–Bessel (KB), GFFT, and LS_NUFFT algorithms

KB GFFT LS_NUFFT

Scale factor scðxÞ sinð
ffiffiffiffiffiffiffiffiffi
f ðxÞ

p
Þffiffiffiffiffiffiffiffiffi

f ðxÞ
p exp 
bð2px2m Þ2


 �
cosðpx=mNÞ

Scale factor scðyÞ sinð
ffiffiffiffiffiffiffiffiffi
f ðyÞ

p
Þffiffiffiffiffiffiffiffiffi

f ðyÞ
p exp 
bð2py2m Þ2


 �
cosðpy=mNÞ

Kernel q1ðj1; kxp Þ I0ðb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 ð2ðfmkxpg 
 j1Þ=mqÞ2

q
Þ

q
exp

 


ðfmkxpg 
 j1Þ2

4b

! Gj1;kak;kxp

Kernel q2ðj2; kyp Þ
I0ðb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 ð2ðfmkypg 
 j2Þ=mqÞ2

q
Þ

q
exp

 


ðfmkypg 
 j2Þ2

4b

! Gj2;kak;kyp

f ðtÞ ¼ p2q2t2 
 b2. I0 is the first-order modified bessel function. x; y ¼ ½
N=2 : N=2
 1=N . j1; j2; k ¼ 
q=2; . . . ; q=2. p ¼ 1; . . . ;M . The matrices

G, a and the parameters m, q, N, and M have been defined.
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the scale factor and the kernel matrices. By formulating

the algorithms using the same configuration of the pa-

rameters, it is easier to compare and evaluate the pro-

posed LS_NUFFT with the conventional gridding

algorithms.

To further analyze the LS_NUFFT, kernels

q1ðj1; kxpÞ as a function of fmkxpg 
 j1 for three ap-

proaches as defined in Table 1 are illustrated in Fig. 1. It
is shown that the kernels of both the Kaiser–Bessel

gridding method and the GFFT approach are shift in-

variant to the trajectory kxp , yet the LS_NUFFT is shift

variant. The Kaiser–Bessel and the GFFT kernel func-

tions do not change their parameters for specific tra-

jectories, however their approximation error is a

function of kxp and kyp from the perspective of the con-

cept of the NUFFT. Therefore, both the Kaiser–Bessel
kernel and GFFT kernel cannot be the best for all tra-

jectories. The LS_NUFFT kernel function enables much

more degrees of freedom in the kernel function to fit for

every specific trajectory and obtain minimum Least-

Square approximation error. Consequently, the

LS_NUFFT could lead to more accurate result than

that of the Kaiser–Bessel or GFFT kernel functions.

2.4. Computational complexity

Notice that M represents the number of k-space
sampling points, N2 represents the number of pixels in

the reconstructed image, the computation complexity

for direct summation reconstruction approach is

OðMN 2Þ according to Eq. (4). Typically M is about N2.

So this complexity is about OðN4Þ.
For the LS_NUFFT, computation complexity to

obtain q1 and q2 is OðMq2Þ according to Eq. (7). The

convolution step in Eq.(11) costs OðMq2Þ and the com-

plexity for the 2D FFT step in Eq. (10) is ðmN log2ðNÞÞ2.
The scaling step by sc only costs OðN2Þ hence can be
ignored. The total complexity is then OððmN log2ðNÞÞ2 þ
Mq2Þ.

Since the conventional gridding method follows the

same steps of convolution and 2D FFT, the computa-

tional complexity is OððmN log2ðNÞÞ2 þMq2Þ as well.
Since the computational complexity for LS_NUFFT

and conventional gridding method is the same, the re-

construction speed of them is similar as well. Note that
usually m ¼ 2, q6 8, N P 64, the additional computa-

tion of the kernel matrix for LS_NUFFT is a minor part

as compared with the computation of the 2D FFT and

the convolution. In addition, the kernel matrix can be

pre-computed for a known trajectory. Consequently the

LS_NUFFT does not increase the cost of computation

as compared with the conventional gridding method.
3. Experimental assessment

3.1. Methods

Simulations and in vivo experiments were performed

to evaluate the reconstruction quality of the LS_NUFFT

and conventional gridding method. Experiments were
carried out on a GE (Milwaukee, WI) 4T whole body

scanner. The FOV was 24 cm, about 1.6 times of the

phantom size and the size of the head to avoid aliasing.

Both single shot spiral trajectory and four-shot inter-

leaved spiral trajectory were used. The trajectories were

designed based on the gradient amplitude and slew rate

constrains of the MRI system to enable sufficient image

resolution and high sampling speed. Fig. 2 illustrates the
1� 4674 k-space trajectory and the DCF for 64� 64

pixel images. Other trajectories: 1� 13,220, 4� 1168

and 4� 3304 are also used but not shown in the figure.

The same trajectories were also used to obtain the k-
space phantom data with the mathematical expressions



Fig. 1. Illustration of kernels q1ðj1; kxp Þ as a function of fmkxpg 
 j1 (Table 1), assume m ¼ 2, q ¼ 4. (a) Kaiser–Bessel, shift (kxp ) invariant. (b) GFFT,

shift invariant. (c) LS_NUFFT, shift variant, uses a 1� 4674 k-space trajectory, 4674 is the number of sampling points. Colors correspond to integer

j1 values.
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proposed by Walle et al. in [13]. Two phantoms were

considered. One is the Shepp and Logan head phantom,

another consists of a set of discs of different radii and

intensities superimposed. Both phantoms were slightly

smoothed by a Gaussian filter in k-space to suppress

ringing artifacts associated with the sharp boundary of

the digital phantom, i.e., the high spatial frequency
component outside of the finite sampling extends in k-
space.

To evaluate the reconstruction results, we used a

measure of minimum distance between the images under

test and the image reconstructed using direct summation

approach. We also compared them directly from
Fig. 2. Left: 1� 4674 k-space trajectory, 4674 is the number of sam-

pling points on the trajectory. ðkx; kyÞ 2 ½
kmax; kmax, kmax ¼ 133:3,

FOV¼ 24 cm. Right: density compensation function. It is used for

reconstruction of following 64� 64 pixel images.
gray-level view and side view. The distance measure is

defined as

DðIÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mina kId 
 aIÞk2=N 2

q
maxðIdÞ

; ð12Þ

where I is the N � N image under evaluation, Id is the

reconstructed image using direct summation and a is a

variable solved by minimizing the norm term. This

measure reflects the approximation error per pixel nor-

malized by the maximum value of the direct summation

image. It is so defined to avoid the effect of scaling in

amplitude on the evaluation of the reconstructed image,

because it does not change the relative contrast of the
image, i.e., the information carried by the image.

We use In and Ik to represent the image reconstructed

using the LS_NUFFT and Kaiser–Bessel gridding

method, respectively. All images are assumed taking

absolute values.
3.2. Results

Tables 2–4 illustrate the performance of the

LS_NUFFT and Kaiser–Bessel gridding method using

the measure of DðInÞ and DðIkÞ for both 64� 64 pixel

images and 128� 128 images. The noninteger parameter

b for Kaiser–Bessel method was optimized using iterative

binary search to reach convergence (until the change



Table 3

Performance evaluation of LS_NUFFT and Kaiser–Bessel (KB) gridding method using the measure of DðInÞ and DðIkÞ and in vivo experimental data

(traj, N) LS_NUFFT KB (traj, N) LS_NUFFT KB

(1� 4674, 64) 1.7e) 4 2.6e) 4 (1� 13,220, 128) 9.2e) 5 1.2e) 4

(1� 4674, 64) 1.8e) 4 2.6e) 4 (1� 13,220, 128) 9.6e) 5 1.3e) 4

(1� 4674, 64) 1.4e) 4 2.2e) 4 (1� 13,220, 128) 9.4e) 5 1.2e) 4

(1� 4674, 64) 1.4e) 4 2.2e) 4 (1� 13,220, 128) 9.4e) 5 1.2e) 4

m ¼ 2, q ¼ 4 for both of them and b ¼ 30:544 for Kaiser–Bessel method.

Table 4

Performance evaluation of LS_NUFFT and Kaiser–Bessel (KB) gridding method using the measure of DðInÞ and DðIkÞ and in vivo experimental data

(traj, N) LS_NUFFT KB (traj, N) LS_NUFFT KB

(4� 1168, 64) 2.3e) 4 3.3e) 4 (4� 3304, 128) 1.4e) 4 2.0e) 4

(4� 1168, 64) 5.2e) 4 7.7e) 4 (4� 3304, 128) 1.4e) 4 2.0e) 4

(4� 1168, 64) 1.6e) 4 2.1e) 4 (4� 3304, 128) 1.1e) 4 1.6e) 4

(4� 1168, 64) 1.7e) 4 2.2e) 4 (4� 3304, 128) 1.1e) 4 1.6e) 4

m ¼ 2, q ¼ 4 for both of them and b ¼ 30:544 for Kaiser–Bessel method.

Table 2

Performance evaluation of LS_NUFFT and Kaiser–Bessel (KB) gridding method using the measure of DðInÞ and DðIkÞ and digital phantom data

Data(traj, N) LS_NUFFT KB Data(traj, N) LS_NUFFT KB

pt1 (1� 4674, 64) 1.1e) 4 1.8e) 4 pt1 (1� 13,220, 128) 4.1e) 5 7.4e) 5

pt2 (1� 4674, 64) 8.3e) 5 1.0e) 4 pt2 (1� 13,220, 128) 8.0e) 5 9.7e) 5

m ¼ 2, q ¼ 4 for both methods andb¼ 30.544 for Kaiser–Bessel method. pt1 for Shepp and Logan head phantom, pt2 for spot phantom.
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using D measure is smaller than 1e) 8). The optimal

value 30.544 was obtained for the case of m ¼ 2, q ¼ 4.

This b value differs from Jackson�s b value in [3], largely

due to our specific implementation procedure of the
Fig. 3. Performance comparison of the LS_NUFFT and Kaiser–Bessel griddi

direct summation method (Id). (b) Image from the LS_NUFFT method

(e) AbsðId 
 IkÞ. Use 1� 13,220 spiral out trajectory. m ¼ 2, q ¼ 4, and N ¼
Kaiser–Bessel gridding method to fit it into a consistent

framework of NUFFT. Nevertheless, the same formu-

lation as that adopted by Jackson et al. was used, thus

our approach should yield the same approximation
ng reconstruction algorithms using head phantom data. (a) Image from

(In). (c) Image from Kaiser–Bessel method (Ik). (d) AbsðId 
 InÞ.
128.



Fig. 4. Comparison of improved nufft and Kaiser–Bessel gridding reconstruction using Phantom 2 data, (a) Result from direct summation method.

(b) and (e) Result from the LS_NUFFT method. (c) and (f) Result from Kaiser–Bessel method. (d) AbsðId 
 InÞ. (e) AbsðId 
 IkÞ. Use 1� 4674 spiral

out trajectory. m ¼ 2, q ¼ 4, and N ¼ 64.
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error. For different m and q, a new optimization process
is needed to obtain a new b. In contrast, the LS_NUFFT

is free from the procedure of parameter optimization.

Table 2 illustrates the performance comparisons us-

ing digital phantom data. It shows that the distance of

the LS_NUFFT image to directly reconstructed image is
Fig. 5. Comparison of improved nufft and Kaiser–Bessel gridding recon

(b) LS_NUFFT In. (c) Kaiser–Bessel method Ik. (d) AbsðId 
 InÞ. (e) AbsðId
consistently smaller (�30%) than that of the Kaiser–
Bessel girding method. And the differences are obvious

for the first phantom, which has greater contrast vari-

ations within the original image.

Tables 3 and 4 compare the performance of the two

algorithms using in vivo experimental data from four
struction using in vivo experiment data. (a) Direct summation Id.

 IkÞ. Use 1� 13,220 spiral out trajectory. m ¼ 2, q ¼ 4, and N ¼ 128.



Fig. 6. Comparison of improved nufft and Kaiser–Bessel gridding reconstruction using in vivo experiment data. (a) Direct summation Id.
(b) LS_NUFFT In. (c) Kaiser–Bessel method Ik. (d) AbsðId 
 InÞ. (e) AbsðId 
 IkÞ. Use 1� 4674 spiral out trajectory. m ¼ 2, q ¼ 4, and N ¼ 64.
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independent measurements. It is shown that the

LS_NUFFT is consistently better for both image sizes

and various types of trajectories. It also indicates that

the LS_NUFFT is suitable for one shot spiral trajectory.

To demonstrate the result, the reconstructed images

are displayed for both phantoms and in vivo experi-

ments. In Fig. 3, reconstructed images from head phan-

tom data with 128� 128 size are shown as well as the
difference caused by the reconstruction algorithms. It

shows that the LS_NUFFT results in a better image with

smaller approximation error to the direct summation

method than the Kaiser–Bessel method. Fig. 4 demon-

strates the advantage of the LS_NUFFT using another

phantom with 64� 64 size. The improvement of the re-

construction performance by the LS_NUFFT is mainly

due to a more explicit solution for the kernel function.
Figs. 5 and 6 strengthen the result using the in vivo

experimental data. The differences between the images

using Kaiser–Bessel method and the LS_NUFFT to the

images using direct summation approach indicate that

LS_NUFFT is a better reconstruction method for spiral

MRI.
4. Discussion

In general, the LS_NUFFT improves the recon-

struction performance of the spiral MRI by generating

more explicit kernel functions that fit for the trajectory

than conventional shift-invariant kernel functions. And
it is possible to further improve the performance of the

LS_NUFFT. For example, better scaling factors can be

found to further reduce the approximation error. How-

ever, LS_NUFFT has limitation in that it is an approx-

imation to the direct summation reconstruction, which in

itself can contain error related to the density compen-

sation function for approximating the nonuniform inte-

gration area in the continuous Fourier reconstruction
form (Eq. (1)). Recently proposed gridding algorithm,

block uniform resampling (BURS) by Rosenfeld [14,15]

does not use the same density compensation approxi-

mation. It estimates the uniform samples from nonuni-

formmeasurements by calculating the local interpolation

matrix followed by pseudoinverse operations for each

Cartesian grid point. Therefore, the BURS may have

performance improvement due to better density com-
pensation as a part of the interpolation step. The idea of

integrating improved density compensation into re-

gridding procedure may apply to the proposed method

to gain additional accuracy. Another advantage of

BURS is that it eliminates the 2-1 oversampling which

could improve the reconstruction speed when large ma-

trix size is used. However, such reduced sampling scheme

may not be applicable in LS_NUFFT because it could
degrade the interpolation accuracy of the LS_NUFFT.

Nevertheless, the LS_NUFFT, even in its current form,

has clear advantages such as straightforward expression

for the explicitly optimized kernel function and im-

proved accuracy as compared with conventional method

without additional computational cost.
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5. Conclusion

An extension of the NUFFT of Liu and Nguyen,

called LS_NUFFT, has been proposed to accommodate

two-dimensional processes. To assess its accuracy and

computational complexity in image reconstruction,

comparisons were made with the traditional direct

summation method and the conventional Kaiser–Bessel

gridding method in the framework of NUFFT.
The reconstructed images from digital phantom data

and in vivo experimental data revealed that the

LS_NUFFT was more accurate than the Kaiser–Bessel

method using the direct summation result as a bench-

mark. It consistently reduced the reconstruction ap-

proximation error. The improvement made by the

LS_NUFFT is due to better kernel matrices it generated

that fit for the k-space trajectory. It is thus believed that
the LS_NUFFT is better than other conventional grid-

ding methods that use ready-made kernel functions.

Although this paper is restricted to spiral MRI, the

LS_NUFFT can also be useful for other 2D recon-

struction applications that collect data on nonuniform

spaced points in the transformed domain. It is also worth

noting that the new LS_NUFFT technique does not in-

troduce additional computational complexity compared
to the conventional Kaiser–Bessel gridding method.
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